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A B S T R A C T

With the aim of providing actionable drought early warning information that water managers and reservoir
operators in Texas could use to implement drought contingency triggers on water supply sources, we have
developed a statistical seasonal prediction system using a canonical correlation analysis prediction model to
predict rainfall from May through July (MJJ), the main rainfall season over much of Texas and the Southern
Great Plains. The statistical model is trained with data between 1982 and 2005 using standardized anomalous
geopotential height at 500 hPa, convective inhibition energy, and soil moisture content in April as the predictors
to generate tercile categorical forecasts of MJJ rainfall. Based on commonly used forecast skill metrics, this
statistical prediction system provides 20–60% higher skill than that obtained from dynamical seasonal forecasts,
and the exceeds skill due to the persistence of MJJ rainfall anomalies over Texas, western Louisiana, Oklahoma
and the Southern Kansas. 2011 hindcast shows that below-normal MJJ rainfall anomalies comparable to those
observed over most of the region. The forecasts for 2014 captured the above-normal MJJ rainfall anomalies as
observed in that year. The forecasts since 2014 have shown acceptable prediction skills at one-to-three months’
lead-time. We have also extended the lead-time to generate probabilistic MJJ rainfall forecasts from January
through March using a hybrid dynamical-statistical forecast scheme. The predictions have been used by the
Texas Water Development Board to inform the Texas State Drought Preparedness Council and to support the
implementation of drought contingency triggers for water supply sources by stakeholders, such as river au-
thorities.

Practical Implications.
We have developed a hybrid dynamical-statistical rainfall

forecast tool to enhance the reliability of the summer drought
early warning over Texas and Southern Great Plains region of the
United States. May and June are the wettest months across much
of Texas and southern Great Plains region. July is the start of the
rainfall season for the western part of the state. Failure of the
May–July rains is an indicator that Texas is in the throes of a
summer drought. Such a drought could worsen in August, gen-
erally the driest and hottest month of the year over much of the
state. Improving seasonal forecasts of May–July rainfall over
Texas thus serves as an early warning of the likelihood of summer
drought over the state. Unfortunately, dynamical climate models
have virtually no skill in predicting rainfall in this season over
Texas and Southern Great Plains (Hao et al., 2018; Infanti and
Kirtman 2014; Livneh and Hoerling 2016; Mo and Lyon 2015;

Slater et al. 2016). The dynamical-statistical prediction model
reported in this study was developed at the request of the Texas
Water Development Board. Its predictions have shown to be of
direct utility for summer drought early warning over Texas.

The hybrid dynamical-statistical rainfall forecast tool was
designed, developed, and tested in collaboration with the Texas
Water Development Board, which is the state agency responsible
for collecting and disseminating water data, compiling the state
water plan based on sixteen regional water plans, and providing
low-cost financing for water, wastewater, and flood mitigation
projects. The model is based on our previous research, also un-
dertaken in consultation with the Texas Water Development
Board, on the predictability of drought over Texas.

The impetus for developing such a tool came on the heels of
the 2011 drought over the state, which was the worst one-year
drought on record. In response to the 2011 drought over Texas,
the Texas Administrative Code § 358.3 (1) on Guidance Principles
for the State Water Plan Development (http://txrules.elaws.us/rule/
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title31_chapter358_sec.358.3) was modified to state that: “The
state water plan shall provide for the preparation for and re-
sponse to drought conditions”. These rule changes require all
regional water plans to have a chapter dedicated to drought re-
sponse information, activities, and recommendations. With these
rule modifications, it became a requirement, in 2012, that all
regional water planning groups to include a chapter on drought
management with the aim of implementing short-term water
demand reductions in the face of impending or existing drought
conditions. Each water user group in a water planning region is
required to develop drought contingency plans and drought ac-
tion triggers for their respective water supply sources. Water user
groups need to consult existing information on impending or
current drought conditions before deciding on whether to im-
plement drought contingency triggers, which set in place volun-
tary or mandatory water use restrictions. Tools such as the
May–July seasonal rainfall forecast provide water user groups
with information on impending drought conditions. Such in-
formation has been used to aid their decisions on whether to plan
for short-term water supply reductions.

Given the improvement in prediction skills demonstrated by
the hybrid dynamical-statistical forecast, the Texas Water
Development Board has been issuing county-level probabilistic
rainfall forecasts for the May–July season, based on the hybrid
forecast system, since 2016 via https://waterdatafortexas.org/
drought/rainfall-forecasts. Archives of probabilistic forecasts and
hindcasts of May–July rainfall, obtained using the statistical
forecast model, are also available at this website.

In summary, we identified through user consultation, the key
season in which having a skillful rainfall forecast would improve
decision-making in the water management sector. We worked
with an interdisciplinary team that included climate scientists,
hydrologists, water managers, river authorities and developers of
the scientific applications to provide the rainfall forecast via an
interface that decision makers in the water sector across Texas
consult for drought information. Through this interface, we have
presented the forecast as county-level and Hydrological Unit Code
(HUC) level 8 categorical probabilistic rainfall forecasts, and as
quantitative forecasts with associated probabilities of exceedance
curves so that users, such as reservoir operators, could select the
type of forecast information of most relevance to their decision
need. We have also provided detailed guidance on what types of
information the forecast conveys and a link through which users
could submit questions (https://waterdatafortexas.org/drought/
rainfall-forecast-info) on the tool. The web interface is constantly
being improved with feedback from users such as river authorities
in the state. For example, we included the provision of the rainfall
forecast by the U.S. Geological Survey’s Hydrological Unit Code
(HUC) 8 level watershed regions within Texas based on feedback
from the Brazos River Authority of Texas. The steps we have
taken in designing, testing, sharing, communicating, and im-
proving the rainfall forecast tool conform to the key steps needed
for the development of a climate service prototype that is tailored
to fit user requirements (Christel et al. 2018).

1. Introduction

The U.S. Southern Great Plains is an important region for food and
energy production. The value of agriculture in the region exceeds tens
of billions of dollars (Steiner et al. 2018). However, this region is also
prone to extreme droughts. Recent studies suggest that strong summer
droughts over the U.S. Southern Great Plains (110°W-92°W and 24°N-
40°N) are often characterized by a rapid intensification of dryness
during late spring – early summer (Fernando et al. 2016). Dynamical
climate models could not predict these droughts (Hoerling et al. 2014;
Kumar et al. 2013; Seager et al. 2014) two–three months in advance
and underestimate rainfall variance (Kam et al. 2014) in part owing to
their limitations in representing summertime convection and land-sur-
face feedbacks (Dai and Trenberth 2004; Wang et al. 2015). In fact,

three-month lead time seasonal rainfall forecasts from dynamical
forecast models show less skill than the autocorrelation of rainfall
anomalies (Hoerling et al. 2014; Quan et al. 2012).

Early warnings of May–July (MJJ) rainfall anomalies relative to the
historical mean over the Southern Great Plains are essential for drought
resiliency planning in agriculture, water management, energy, and
forestry, and for supporting emergency management. For example, an
improved MJJ rainfall anomalies can enable early initiation of drought
protocols for wildfire prevention, stocking up on drinking water sup-
plies, restriction of non-essential water use, early action to curtail
evaporative water loss from water supply reservoirs, etc. The improved
seasonal prediction of MJJ rainfall anomalies reported in this study
enables the stakeholders to implement water conservation, and acquire
needed permits and supplies for drought risk reduction and wildfire
preparedness planning with one-to-three months’ lead-time, which
could reduce the economic cost and structural damage from drought
and wildfires.

What causes late spring - early summer or MJJ drought over the US
Southern Great Plains? Droughts in Texas are generally associated with
La Niña-induced cooler sea surface temperature (SST) anomalies
(Ropelewski and Halpert 1986, 1987; Schubert et al. 2009). Established
in the fall, cooler than normal SST anomalies contribute to winter
drought over Texas by causing a poleward displacement of the sub-
tropical jet stream (Eichler and Higgins 2006; Kousky 1989). In addi-
tion, Fernando et al. (2016) have observed that dry springs play a pi-
votal role in the onset of severe-to-extreme summer drought events over
Texas and the Great Plains, consistent with past case studies (Namias
1982; Seager et al. 2014). In particular, the advection of warm and dry
westerly winds in the lower troposphere from the Mexican plateau in
April can increase temperature at 700 hPa, which in turn increases
convective inhibition energy (CIN, negative buoyancy in the lower
troposphere) (Fernando et al. 2016; Ryu and Hayhoe 2017a,b). These
factors inhibit the development of convective systems during the onset
of summer rainfall and are the main contemporaneous cause of drought
during June through August over Texas (Fernando et al. 2016; Myoung
and Nielsen-Gammon 2010a). Thus, these studies concluded that an
enhanced CIN in the spring is an important precursor for summer
drought over the region.

Only half of the La Niñas lead to summer droughts over the US Great
Plains (Pu et al. 2016). Thus, La Niña alone is not a good predictor of
the summer droughts. Rather, Fernando et al. (2016) shows that about
12 out of 13 summer droughts over the US Great Plains since 1950 were
preceded by a dry spring. They attribute such a spring to summer
memory to land surface feedbacks, based on many previous studies
(Hong and Kalnay 2002; Lyon and Dole 1995). For example, Koster
et al. (2004) using simulations show that soil moisture and precipitation
are strongly coupled over the Central United States, including the
Southern Great Plains. The lack of precipitation from winter through
early-spring leads to significant cumulative soil moisture deficits, a
reduction in evapotranspiration, and an increase in sensible heating as
well as surface temperature to balance the decrease of evapo-
transpiration (Fernando et al. 2016). Dry soil owing to the precipitation
deficit provides a positive feedback and further enhances such deficits
(Mueller and Seneviratne 2012). Such a positive land surface feedback
manifests itself as a significant correlation between dry soil moisture
anomalies and lagged 500 hectoPascals (hPa) geopotential height
anomalies (2–3weeks) over the South-Central United States (Fernando
et al., 2016). In addition to the local feedbacks, a persistent westward
expansion of the North Atlantic Subtropical High over the region could
suppress convection over the region (Ryu and Hayhoe 2017b). Dry soil
moisture, reduced cooling owing to evapotranspiration along with a
high pressure raise the surface temperature, convective inhibition over
the domain and lead to a reduction in precipitation.

This study aims to apply the above discussed predictive under-
standing to improve probabilistic prediction of MJJ rainfall anomalies
by introducing a statistical forecast system based on multivariate
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Empirical Orthogonal Function (EOF) and Canonical Correlation
Analysis (CCA) provided by the Climate Prediction Toolkit (Mason and
Tippet, 2016). Our predictor variables are based on our understanding
of these key processes responsible for the initiation and persistence of
rainfall deficits. We show the sensitivity of our statistical model skills to
various input datasets, compare the statistical forecast skill with those
of the dynamical forecasts, and assess the skill of hindcasts of MJJ
rainfall anomalies for known dry and near-normal years over Texas and
the Southern Great Plains region. We also discuss the steps we took to
provide the forecasts from our statistical model through a website that
was designed and updated with continuous user feedback.

2. Datasets

We used monthly 1˚x1˚ rainfall from the CPC global land pre-
cipitation dataset (Chen et al. 2002) to derive seasonal rainfall for the
period 1982–2014 (https://www.esrl.noaa.gov/psd/data/gridded/
data.unified.daily.conus.html).

We also used anomalous monthly 500 hPa geopotential height,
temperature at 700 hPa, 2-meter dewpoint temperature and 0–10 cm
depth liquid volumetric soil moisture (non-frozen) for March, April, and
March-May (MAM) from the National Centers for Environmental
Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) for the
period of 1982–2010 (Saha et al. 2010), and the monthly values of the
same fields derived from the 6-hourly Climate Forecast System version
2 (CFSv2) real-time data for the period 2011–2014 (Saha et al. 2014).
These CFSR and CFSv2 data are obtained from the Data Library of the
International Research Institute for Climate and Society (http://iridl.
ldeo.columbia.edu).

The latitudinal means were removed from the 500 hPa geopotential
height data. CIN is calculated by subtracting temperature at the 700 hPa
pressure level from 2m dew point temperature following (Myoung and
Nielsen-Gammon 2010b).

To test the sensitivity of the prediction skills to the uncertainty of
data for the predictors, we used 500 hPa geopotential height and tem-
perature at 700 hPa from monthly means of analyzed state meteorology
product (MAIMNPANA, https://cmr.earthdata.nasa.gov/search/
concepts/C1274767784-GES_DISC); relative humidity and air tem-
perature at 925 hPa from the 3-hourly instantaneous meteorology
product (MAI3CPASM); and root zone soil wetness data from the
monthly mean land surface diagnostics product (MATMNXLND) for
April 1982–2013 from the National Aeronautics and Space
Administration (NASA) Modern Era Retrospective-analysis for Research
and Applications (MERRA) (Rienecker et al. 2011). Monthly dew point
is derived using the 3-hourly relative humidity and air temperature
fields. The latitudinal means are removed from the 500 hPa geopoten-
tial height data. MERRA reanalysis is available at OPeNDAP/DODS
access to the NASA GES DISC GrADS data server (https://goldsmr3.
gesdisc.eosdis.nasa.gov/opendap/).

To test the sensitivity of the prediction skill to soil moisture input
and the potential improvement of prediction skill using satellite ob-
servations of the soil moisture anomalies, we also used daily soil
moisture, aggregated to monthly values, from the merged active and
passive microwave retrievals product of the European Space Agency
Climate Change Initiative Essential Climate Variable Soil Moisture
(ECV-SM) dataset version 1 (http://www.esa-soilmoisture-cci.org; (Liu
et al., 2011, 2012) for the period 1982–2010. These data are available
at 25 km resolution.

To compare the skills of the statistical prediction model to those of
the ensemble seasonal prediction by dynamical models, we obtained
the ensemble mean rainfall predictions of all the ensemble members
(listed in parentheses) of seven models that participated in the North
American Multi-model Ensemble Project (NMME, Kirtman et al., 2014).
These models are the CMC1-CanCM3 (10), CMC2-CanCM4 (10), COLA-
RSMAS-CCSM3 (6), GFDL-CM2p1-aer04 (10), GFDL-CM2p5-FLOR-A06
(12), NASA-GMAO-062012 (12), and CFSv2 (28). The skills of these

ensemble rainfall predictions for MJJ during the period of 1982–2010
are compared to those of the statistical prediction. These can also be
downloaded from http://iridl.ldeo.columbia.edu.

All data fields cover the domain 24°N-40°N and 110°W to 92°W,
referred to in this study as the Texas and Southern Great Plains domain.
All the data fields were gridded to 1° horizontal resolution using bi-
linear interpolation.

3. Statistical prediction tool and forecast products

3.1. Computing the predictor and predictand inputs for the statistical
forecast model:

We use datasets over a period of 1982–2005 to train the statistical
prediction model. First, we convert all the predictor variables (CIN, soil
moisture, and 500 hPa geopotential height) into standardized anoma-
lies to highlight the rainfall anomalies relative to their local variability
and to minimize the impacts of data biases. The predictor variables are
subjected to multivariate EOF analysis using the Singular Value
Decomposition (SVD) algorithm. Multivariate EOF of the predictor
variables enables the extraction of the most coherent spatial and tem-
poral variances in a dataset (Lorenz 1956) and maximize the explained
covariance. The leading modes of the multivariate EOF analysis capture
the largest co-variability found in the original dataset (Wilks, 2006). We
retained the first two EOF modes, accounting for at least 70 percent of
the variance in the predictor fields. We then applied the Varimax
method (Kaiser 1958) to rotate the first two multivariate EOF modes
(Richman 1986). The rotated EOF modes are linear combinations of the
two orthogonal multivariate EOF modes and represent interrelated
clusters (Barnston and Livezey 1987) of the predictor fields. The code is
available at https://github.com/twdb/wdft-drought/tree/master/data
and can be accessed by sending a permission request to water-
datafortexas@twdb.texas.gov.

We use standardized anomalous soil moisture, geopotential height,
and CIN during April as inputs to the CCA statistical model for pre-
dicting rainfall in late spring - early summer (May-July, or MJJ). The
monthly standardized anomaly at each grid point was calculated by
subtracting the monthly mean for a given month from the observed
value at a grid point and, then dividing by the monthly standard de-
viation for that grid point. Each grid point has twelve monthly means
and standard deviations, respectively. This method of deriving monthly
anomalies removes seasonality.

We input the spatial loadings of the rotated multivariate EOF modes
as predictor variables to a Canonical Correlation Analysis (CCA) (von
Storch and Zwiers, 2002) using the Climate Predictability Tool (CPT,
http://iri.columbia.edu/our-expertise/climate/tools/cpt/, (Mason and
Tippet 2016; Simon J. Mason 2017). To compute the skills and the
probabilities of the occurrences of drought, we have used CPT version
14. We have also undertaken the analysis using CPT versions 14 and 15.
Therefore, the analysis can be replicated using the latest CPT version.
We arrange the yearly rotated values for the first two modes and use as
X input to the CPT. For Y input, we use the chronological rainfall values
for May-June period. CCA maximizes the correlations between the
principal components of the leading multivariate EOF of the predictors
and the principal components of the predictand. In doing so, it identi-
fies a sequence of pairs of patterns between the predictors and the
predictand fields (Wilks 2006). CCA has been shown to be an effective
approach for forecasting SSTs (Landman and Mason 2001), seasonal
temperatures over land (Shabbar and Barnston 1996), and ENSO epi-
sodes (Barnston and Vandendool 1993). Thus, we choose CCA for
constructing our statistical model for seasonal forecast of MJJ rainfall
anomalies.

3.2. Hybrid dynamical-statistical forecast

For the hybrid dynamical-statistical forecast, we use forecasts of
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predicted values of April atmospheric circulation patterns and soil
moisture over Texas known to influence May–July rainfall at 3-month
(January), 2-month (February), and 1-month (March) lead times. The
predictions are obtained from the Climate Forecast System version 2
(CFSv2, Saha et al., 2014), which is the operational dynamical seasonal
forecast model of the National Oceanic and Atmospheric Administra-
tion-National Centers for Environmental Prediction. The hybrid dyna-
mical-statistical forecast is based on the Model Output Statistics where
there is a lag time between the predictor and the predictand unlike the
Perfect Prognosis approach, where the is no lag time between the
predictor and the predictand.

3.3. Skill scores

Forecast skill assessment was undertaken using cross-validated
forecasts (Barnston and Ropelewski 1992; Michaelsen 1987) over a
24 year training period from 1982 through 2005, with a 3-year cross-
validation window. The strength of the predictor fields was assessed
based on the goodness-of-fit between the cross-validated forecasts and
the observation time series (CPC precipitation measurements). The
forecasts are available as deterministic forecasts (i.e. for rainfall
anomalies) or as categorical probabilistic forecasts (i.e. probabilities of
whether seasonal rainfall will be below-, near-, or above-normal).

Skills of the statistical models are assessed in two steps. First, the
skill of deterministic forecasts of seasonal cumulative rainfall is as-
sessed using Spearman’s Ranked Correlation between observations and
cross-validated rainfall at each grid point. Second, the skill of prob-
abilistic forecasts was assessed using the Two Alternative Forced Choice
score for forecast categories (2AFC; (Mason and Weigel 2009), the area
under the Relative Operating Characteristics curve for the below-
normal category (ROC; (Mason and Graham 2002), and the Ranked
Probability Skill Score (RPSS, Muller et al., 2005), again at each grid
point. The 2AFC score ranges from 0 to 100 percent. 2AFC scores>50
percent indicates that the forecast is able to discriminate beyond
random guessing (Mason and Weigel 2009). The ROC compares hit rate
versus false alarm of the prediction to those of random noise. The area
under the curve represents the probability that the prediction is correct
beyond that by chance. The RPSS is used to explore how these skill
scores compare to the mean square error in a probability space. RPSS is
a widely used method to compute skills for ensemble forecasts. RPS is
calculated from a cumulative distribution. The difference in the ob-
servation and the prediction is squared to calculate the score.

Given our interest in late spring - summer drought early warning,
we use the ROC score to assess whether the statistical rainfall forecast is
able to correctly discriminate the below-normal forecast category from
the near-normal or above-normal forecast categories. The ROC score
also ranges from 0 to 1 and only a score>0.5 indicates that the forecast
is able to discriminate beyond random guessing. For the RPSS, we
adopted the subjective RPSS threshold of five percent (5%) as re-
presenting “good skill” in a forecast after Goddard and Dilley (2005).
set a subjective. We have used this threshold in the interpretation of the
forecast skill from our statistical model.

To assess if statistical predictions can provide higher skills than
those of the dynamical prediction, we also compare 2AFC, ROC, and
RPSS for the three-month lead NMME forecasts of MJJ precipitation
with those scores obtained from the statistical forecast of MJJ rainfall,
both initialized in April. The tercile probabilities for the NMME fore-
casts were obtained using the GCM validation option in CPT, which lets
the user compare model output to observed data either on a station or
grid box basis.

3.4. Developing rainfall forecast products of use to Texas stakeholders

The Texas State Drought Preparedness Council, on page 32 of its
2014 Drought Annex (https://www.preparingtexas.org/Resources/
documents/State%20and%20Fed%20Plans/2014_04_04_Drought

%20Annex.pdf), states that: “Although drought is a slow moving in-
cident, public information on forecasted or persistent drought condi-
tions and impacts is extremely vital. The release of timely, consistent
and effective public information helps all Texans understand threats,
potential impacts, available services, funding options and timelines for
response and recovery.” The MJJ rainfall forecast has direct utility to
Texas’ Drought Annex.

The TWDB is a member of the Texas Drought Preparedness Council
and is responsible for providing monthly (or quarterly, if there is no on-
going drought) updates on drought and water supply conditions in the
state. It has been providing real-time reservoir storage conditions,
drought indices, water supply conditions, etc., via water-
datafortexas.org since 2012. Given that the statistical model could
forecast summer rainfall over Texas and the Southern Great Plains re-
gion in the spring with skill levels acceptable to decision makers, and
because drought resilience within Texas could be enhanced through the
provision of advanced information for drought preparedness planning,
the TWBD automated the rainfall forecast model and started providing
probabilistic forecasts of average May–July rainfall in each county in
Texas from the beginning of May 2016. The forecasts were issued from
mid-January through May 1 of each year. The forecasts are updated at
the beginning and middle of each month using forecasts of April pre-
dictors initialized on January 15, February 1, February 15, March 1,
and March 15. Forecast updates issued on April 1 and April 15 use
reanalysis fields of April predictors from the CFSR dataset. The forecasts
are, in effect, be summer drought forecasts at 6.5- and 6-month
(January initial conditions), 5.5- and 5-month (February initial condi-
tions), 4.5- and 4-month (March initial conditions), and 3.5 and 3-
month (April initial conditions) lead times.

Drought management as a water management strategy is an interim
strategy designed to meet near-term needs through demand reduction
until long-term water supply measures are implemented. Such a
strategy typically targets a reduction in municipal water demand. In the
long-term it increases water use efficiency and serves more users. New
rules adopted for TWDB’s water planning process in 2012 (http://
txrules.elaws.us/rule/title31_chapter358_sec.358.3) requires all re-
gional water planning groups to include a chapter dedicated to drought
response information, activities, and recommendations. The water
planning regions are required to seek better information on drought
action-triggers, and to provide recommendations for each existing
water source (triggers and responses).

The TWDB collaborated with the Brazos River Authority, a key
water management and reservoir operations entity in Texas, to apply
the rainfall forecast tool to provide guidance information on the like-
lihood of reservoir storage dropping below drought trigger levels. This
information could set in place drought response stage restrictions as
defined in drought contingency plans of water user groups in Texas.

We worked closely with the Brazos River Authority’s Water Services
(BRA) staff in developing the reservoir storage forecast methodology.
Engagement with BRA staff commenced in October 2015 when we
asked them if they would be interested in working with the Texas Water
Development Board on developing a test scenario of the application of
seasonal rainfall forecasts for reservoir storage forecasts. BRA staff was
very receptive to our inquiry and was eager to collaborate with us. We
met several times with them in person and had frequent communication
via e-mail regarding datasets, forecast methodologies, and progress
updates. They also helped us identify test reservoirs, explained their
information needs related to drought contingency trigger implementa-
tion, provided us with historic monthly diversion data for their re-
servoirs, and provided us with diversion estimates for the forecast
seasons.

BRA staff has let us know that they have been tracking the bi-weekly
rainfall, and have also let us know that they will be including the
rainfall forecast tool as a resource to be checked for drought initiation
in their 2019 Drought Contingency Plan revision. We consider their
intention to include the tool in their Drought Contingency Plan update
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as a major achievement of our effort to develop a climate service for
drought early warning in Texas. While working on the experimental
reservoir storage forecasts we realized that the probabilistic rainfall
forecasts did not provide sufficient information by which to tailor the
reservoir forecast. Exceedance probability plots provide information on
the probability of exceedance of a particular percentile, or percentage
of normal, of rainfall. Such information is useful when designing a re-
servoir forecast because it provides the user with information about
how much drier or wetter a particular season is going to be. Such
quantitative (or deterministic) information is more useful to water
managers than is information on only the likelihood of whether the
seasonal will be above-, near-, or below-normal. Therefore, we devel-
oped added functionality to the rainfall forecast tool to include graphs
of rainfall exceedance probabilities for each county on the interactive
rainfall forecast map. We also included the provision of the rainfall
forecast by the U.S. Geological Survey’s Hydrological Unit Code (HUC)
8 level watershed regions within Texas based on feedback from the
Brazos River Authority of Texas.

4. Results

In Fig. 1 we illustrate the key pre-conditions in spring for MJJ

rainfall deficit using the Spearman’s rank correlation between MJJ
rainfall and different meteorological as well as land-surface parameters
in April. Geopotential height anomalies at 500 hPa (Z500) in April are
negatively correlated with rainfall anomalies in MJJ centered over the
Southern and Western Texas, northern Mexico, and over a large area of
New Mexico and Colorado (p<0.10) (Fig. 1a). Such negative corre-
lation suggests that an anomalously high geopotential height at 500 hPa
in April is significantly correlated with a negative rainfall anomaly in
MJJ. We have also found a similar correlation pattern between the
geopotential height at 250 hPa in April (not shown) and rainfall
anomalies in MJJ to that shown in Fig. 1a. A significant negative cor-
relation (p<0.10) between the surface temperature anomalies in April
and rainfall anomalies in MJJ is seen over Texas, northeastern Mexico,
eastern New Mexico and eastern Colorado (Fig. 1b), suggesting that
anomalously warm surface temperature in April is correlated with
anomalously low rainfall in MJJ over these regions. There is a negative
correlation between an increase of CIN in April and decrease of rainfall
in MJJ over the Southwestern half of the Texas and Northeastern
Mexico (Fig. 1c). Finally, dry soil moisture anomalies in April are sig-
nificantly correlated with negative rainfall anomalies in MJJ over much
of the Texas and northern Mexico, and also over eastern Oklahoma and
Kansas (Fig. 1d).

a     b 

c     d

Fig. 1. Spearman’s rank correlation between MJJ precipitation (mm/day) and various meteorological parameters, such as (a) 500 hPa geopotential height (m), (b)
Surface Temperature (K), (c) CIN, and (d) Soil moisture (kg/m3) during the month of April over the domain. Brown (green) color represents negative (positive)
correlation coefficients (see, color bar). Black line contour represents the p values for significant correlations. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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In Fig. 2 we show seasonal prediction skills as depicted by the
Spearman’s Correlation (top panel), ROC (below-normal, second panel),
2AFC (forecast categories, third panel), and RPSS (bottom panel) using
April (left column), March (center column) and March through May
(MAM, right column), respectively, as the initial conditions for the pre-
dictor fields. All the skill metrics show that the best skill is achieved
when April initial conditions are used to predict MJJ rainfall. Compared
to April, March initial conditions yields poor skills. MAM initial condi-
tions improve prediction skills compared to March-only initial conditions
but are still lower than that obtained using April initial conditions. The
stronger predictability provided by the anomalous condition shown in
Fig. 2 is consistent with the higher sensitive of MJJ drought condition to
the anomalous large-scale circulation and land surface conditions in
April reported in previous studies (Fernando et al. 2016; Namias
1982)Thus, we use April initial conditions for our analysis in this study.

We also compare the skill of the statistical prediction (Fig. 2) to the
dynamical seasonal prediction by the NMME for MJJ rainfall anomalies
initialized in April (Fig. 3a–3c). Statistical prediction skills are

consistently higher than those of NMME across all three-skill metrics by
20–50% over Texas, Oklahoma, eastern New Mexico and Northeast
Mexico. In the northern and western parts of the domain, the dynamical
forecast outperforms the statistical forecast. These results are consistent
with, and presumably caused by, stronger spring to summer memory
and land-atmospheric feedbacks over Texas, Oklahoma, northeastern
Mexico and Colorado (Fig. 1). It is interesting to note that RPSS skills
are negative, which shows that multi model ensemble members predict
exactly opposite to the observation since RPSS is computed from the
differences between the observation and prediction.

Decision makers in Texas, such as water resource managers need
MJJ rainfall predictions with lead-time of more than one season. Yet,
our statistical prediction skill is limited to one season by the intrinsic
memory of the climate system. Given better skills of dynamical pre-
diction in winter and early spring (Quan et al. 2012), we investigate if it
is feasible to extend the lead-time for the MJJ rainfall forecast using a
hybrid statistical-dynamical approach. In Fig. 4 we show skill metrics
for longer lead-time forecasts of MJJ rainfall. As expected, prediction

Fig. 2. Comparison of the prediction skills for different initial conditions using April (left column; a, d, g, and j), March (middle column; b, e, h, and k), and MAM
(right column; c, f, i, and l) as input time using cross-validated hindcasts between 1982 and 2005 and observations.
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Fig. 3. NMME skill maps for MJJ rainfall anomalies initialized in April.

Fig. 4. Skill comparison maps for MJJ rainfall anomalies using initial conditions in (a) January-April (6 months lead), (b), February-April (5 months lead), (c) March
and April (4months lead), and (d) April (4 months lead) .
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skill decreases as forecast lead-time increases. However, despite the
weakening of atmospheric memory with longer lead-time initial con-
ditions, this hybrid dynamical-statistical prediction system begins to
show skills for the probabilistic predictions (>0.5) as early as in Feb-
ruary (Fig. 4b, the middle and right panels). Grid points with the
highest ROC and 2AFC scores lie within Texas and Oklahoma for the
probabilistic forecasts initialized with April inputs (Fig. 4d, middle and
right panels). Deterministic forecast skill, RPSS (>0.3), or the Spear-
man’s correlation coefficient is also high (>0.6) when we use April as
the initial condition. Thus, the hybrid dynamical-statistical prediction
has shown the potential to provide useful information to support de-
cision-making in the water sector.

We have also used other reanalysis datasets to test the sensitivity of
the statistical forecast tool to input data sets. In Fig. 5a-5d we show the
prediction skill for MJJ rainfall anomalies using predictors fields in April
obtained from MERRA. The skills are noticeably lower than those using
CFSR for the predictor fields (Fig. 5e-5 h). Fig. 5e-5 h show the prediction
skills of the MJJ rainfall anomalies using soil moisture anomalies ob-
tained from ECV-SM datasets to replace soil moisture anomalies obtained
from CFSR. The skills are generally lower than those using the CFSR,
presumably because the satellite-based soil moisture in ECV-SM re-
presents only surface soil moisture (the top 0.5–2 cm soil layer).

In Fig. 6 we show MJJ rainfall hindcasts at various lead-times for
2011, 2012, 2013, and 2014 using initial conditions of predictor fields in
April from CFSR data, and hindcasts of April predictor fields from NMME
predictions initialized in January, February, and March, respectively, for
6, 5, and 4-month lead-time rainfall hindcasts. During 2011 (left
column), the hindcasts show that the hybrid dynamical-statistical pre-
diction system would be able to predict the early MJJ rainfall deficits
with a 6-month lead-time except for the Texas Panhandle, West Texas,
New Mexico and the southeastern Colorado (Fig. 6a). The predictions
with 5 and 4-month lead-time (Fig. 6e and i) show higher skills than

those of NMME predictions with 3-months leadtime (Fig. 3). The statis-
tical prediction system’s hindcasts of MJJ rainfall deficits are comparable
to those observed (Fig. 6m and 6q) over much of the Southern Great
Plains at 3-month lead-time. The hindcasts for 2012 also captures the
observed dry rainfall anomalies in MJJ, although they substantially un-
derestimate the rainfall deficits (Fig. 6b, 6f, 6j, 6n, and 6r). The hindcasts
mostly missed the observed spatial patterns of the MJJ rainfall anomalies
in 2013 (Fig. 6c, g, k, o, and s). In 2014, the hybrid dynamical-statisti-
calal hindcasts with at 5-month and −4-month lead-times are able to
predict the wet anomalies (Fig. 6h, 6i), although it underestimates the
magnitude of the observed rainfall anomaly (Fig. 6t). The hybrid dyna-
mical-statistical hindcast for 2014 at the 6-month lead time predicts
strong dry anomalies in MJJ (Fig. 6d), opposite as that observed (Fig. 6t).
The statistical hindcast of 3- month lead time (Fig. 6p) strongly over-
estimates the wet MJJ rainfall anomalies compared to the observation
(Fig. 6t). Thus, the statistical and hybrid dynamical-statistical prediction
systems appear to perform better at predicting strong dry rainfall
anomalies (2011) than at predicting weaker dry anomalies (2012) or
wetter rainfall anomalies (2014). The dynamical-statistical forecast also
failed to accurately predict the spatially mixed dry and wet anomalies
over Texas and the Southern Great Plains in 2013. Table 1

We tracked the interest in the drought forecast tool (called “rainfall
forecast tool” from May 1, 2017), and the information page on the
forecast tool using Google Analytics metrics. We report here (Table 2) on
the number of page views and the number of unique views on these tools
since they were deployed. Full Google Analytics reports, with the link to
the relevant site, are being sent as a separate attachment to this report.

In the first year since the drought (rainfall) tool went online there
were 876 unique views on the page. In the second year (May 1,
2017–April 30, 2018) and the start of the third year (May 1–May 31,
2018) there were 966 unique views on the page. This is a 10.27% in-
crease in the second year since the tool was launched. Similarly, there

Fig. 5. Skill maps for MJJ rainfall anomalies using initial conditions from MERRA reanalysis product (top panel; a, b, c, and d) and ESA soil moisture datasets (bottom
panel; e, f, g, and h) during the month of April.
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was a 60.8% increase in unique views on the drought forecast/rainfall
forecast information page in the second year. We interpret this increase
in the number unique page views to represent an increased interest in

the forecast tool (and its associated information) and an increased
adoption of the tool by decision makers as a source of drought early
warning information.

Fig. 6. Maps of statistical forecasts of rainfall anomalies based on initial conditions in (a-d) January (6months lead), (e-h), February (5months lead), (i-l) March
(4months lead), and (m-p) April (3 months lead) for 2011–2014. (q-t) observed precipitation anomaly during 2011–2014 using CPC data sets. All anomalies are
estimated based on 1982–2010 mean of hindcasts and observation.
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5. Conclusions and discussion

Rainfall during May-July (MJJ) has strong impacts on agriculture and
water resource availability and demand over the Southern Great Plains and
Texas. However, predicting MJJ rainfall on the seasonal scale is especially
challenging for dynamical weather-climate models over the Southern US
Great Plains (Quan et al. 2012). To address this challenge, we have devel-
oped a seasonal statistical and a dynamical-statistical prediction system
based on the observed relationship between spring anomalous atmospheric
and land surface conditions and the MJJ rainfall anomalies reported ex-
tensively in the literature. This statistical prediction system is based on CCA
(implemented using the IRI’s Climate Predictability Tool) and has the three
key pre-conditions in spring, i.e. 500hPa geopotential height, the CIN index
determined by the difference in temperature between 700hPa and dew-
point at the surface, and soil moisture anomalies, as the predictor variables
and mean MJJ rainfall anomalies as the predictand. The model is trained
using observations for the period of 1982–2005. Our analysis shows that the
best skill between forecast and observed MJJ rainfall anomalies is achieved
by using April initial conditions of these three predictor variables (Fig. 2).
The predictand used in this paper is MJJ rainfall anomalies. The rainfall
forecast can be provided either as a deterministic forecast of rainfall
anomalies or as categorical probabilistic forecasts of the likelihood that
MJJ rainfall will be below-, above, or near-normal (e.g. https://
waterdatafortexas.org/drought/rainfall-forecast).

The skill of this seasonal statistical prediction system, as measured
by the Spearman’s correlation coefficient, 2AFC, and ROC, is 20–60%
higher than that of the dynamical predictions by NMME (Fig. 3). RPSS
also confirm that the best skills for MJJ rainfall prediction are achieved
when April initial conditions are used. The highest skill scores are found
in Texas, Oklahoma, and northeastern Mexico. Hindcasts outside of the
training period show that this prediction system would have predicted
the dry rainfall anomalies during MJJ of 2011 with the pattern and
magnitude similar to those observed, especially over Texas, Oklahoma,
and northeastern Mexico. It also predicted wetter rainfall anomalies
during MJJ in 2014, although substantially overestimated their mag-
nitude.

We have also tested the sensitivity of the prediction skills for dif-
ferent reanalysis and soil moisture datasets. The results suggest that the
inputs (predictors) derived from the CFSR provide better prediction
skills than those from MERRA and ESA-SM soil moisture data.

To address the need for water resource decisions, we further ex-
plored a hybrid dynamical-statistical prediction system to predict MJJ
rainfall anomalies with 4–6months lead-time. This hybrid statistical-
dynamic prediction system combines the strengths of the dynamical
predictions of the large-scale atmospheric circulation and land surface
condition in winter and spring with that of the statistical prediction of
MJJ rainfall anomalies. It uses the predicted 500 hPa geopotential
height, the CIN index, and soil moisture anomalies in April by the
NMME predictions initialized in January, February, and March, re-
spectively. This system shows prediction skills up to 3–5month lead
time (Fig. 4). The hindcasts suggest that this hybrid dynamical-statis-
tical prediction system would have predicted the 2011 and 2012 dry
rainfall anomalies with up to 3–6-months lead-time. It could also pre-
dict the observed wetter anomalies of 2014 with up to 3–5months’
lead-time, although the prediction over-estimates the magnitude.

The combination of the statistical and hybrid statistical-dynamic
prediction systems is able to provide an early warning of a drier-than-
normal or wetter-than-normal late-spring– early-summer season with
lead-time of up to 3–6-months. Given the prediction skills demonstrated
by this system, the Texas Water Development Board has been issuing
county-level probabilistic rainfall forecasts for the MJJ season in May of
2016 via https://waterdatafortexas.org/drought/rainfall-forecast.
These forecasts provide rainfall information, to assist water user groups
in the state in their implementation of drought contingency triggers for
their water supply sources in the event of an impending MJJ drought.
These forecasts provide a window of opportunity for improved forecast
skills and predictions (Rodwell and Doblas-Reyes 2009) and have been
applied to guide the implementation of drought contingency for water
supply reservoirs in Texas. These forecast tools available on Water Data
for Texas have been tailored to address climate information needs of
reservoir operators in Texas. In doing so, these seasonal rainfall pre-
dictions shown in this paper is an example of developing a climate
service to fill an information gap and meet to meet climate information
needs related to drought from stakeholders in the water sector in Texas.

The statistical prediction system is mainly limited to spring and
early summer seasons (April-July) when drought memory is observed.
In other seasons, dynamical predictions could out-perform this statis-
tical prediction system, as large-scale dynamics of the atmosphere and
oceanic forcing become more important in determining rainfall
anomalies.

Table 1
Lists of data sets used.

Dataset Period Parameters Reference

Climate Forecast System Reanalysis 1982–2010 Geopotential height, pressure, dew point temperature, temperature, soil
moisture

Saha et al. 2014

Climate Forecast System version 2 2011–2013 Geopotential height, pressure, dew point temperature, temperature, soil
moisture

http://iridl.ldeo.columbia.edu

MERRA (MAIMNPANA); 3 hrly 1982–2013 Geopotential height, pressure, temperature, Relative humidity https://goldsmr3.gesdisc.
eosdis.nasa.gov/opendap/

MERRA (MATMNXLND) 1982–2013 Soil wetness data https://goldsmr3.gesdisc.
eosdis.nasa.gov/opendap/

European Space Agency Climate Change Initiative
Essential Climate Variable Soil Moisture (ECV-SM)

1982–2010 Soil Moisture http://www.esa-soilmoisture-
cci.org

CPC global land precipitation dataset 1982–2014 Rainfall Chen et al. 2002
NMME 1982–2010 CMC1-CanCM3 (10), CMC2-CanCM4 (10), COLA-RSMAS-CCSM3 (6),

GFDL-CM2p1-aer04 (10), GFDL-CM2p5-FLOR-A06 (12), NASA-GMAO-
062012 (12), and CFSv2 (28).

Kirtman et al., 2014

Table 2
Google Analytics Metrics for tools produced by project.

Tool/information Time period Page Views Unique Page Views

Drought forecast May 1, 2016–April 30, 2017 (year 1) 1138 876
Drought forecast information page May 1, 2016–April 30, 2017 215 166
Rainfall forecast May 1, 2017–May 31, 2018 (year 2 and start of year 3) 1266 966
Rainfall forecast information page May 1, 2016–April 30, 2017 340 267
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